Shiga Toxin-Producing *Escherichia coli*: The Human Health Perspective

P. I. Tarr
Division of Gastroenterology and Nutrition
Washington University School of Medicine

NOTE: Some slides could include data that have not yet been published, or subject to peer review, and should not be quoted and should be considered to be preliminary.
Perspective

E. coli O157:H7: ~ .9/100,000 people/year

(MMWR Morb Mortal Wkly Rep 2011;60:749-55)

HUS: 500-750 cases per annum, 90% < 18 yo

Rare infections need good systems, protocols, and vigilance
• How can we optimally diagnose this infection?

• Can we attenuate human illnesses?

• What misconceptions do we need to address?
Time is not on your side!
First Contact (frequently ER)

Profile:

<table>
<thead>
<tr>
<th>Table 1. Elements at Presentation That Suggest a Patient Is Infected With E coli O157:H7</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Nonbloody diarrhea that becomes bloody after 1–3 days.</td>
</tr>
<tr>
<td>• No fever at presentation to medical care.</td>
</tr>
<tr>
<td>• Tender abdomen.</td>
</tr>
<tr>
<td>• More than 5 stools in the past 24 hours.</td>
</tr>
<tr>
<td>• Pain is worse on defecation.</td>
</tr>
<tr>
<td>• No, few, or moderate fecal leukocytes (but fecal leukocytes, in our opinions, have little relevance in this situation).</td>
</tr>
<tr>
<td>• Diarrhea, and especially bloody diarrhea, persists during first 8 hours in hospital.</td>
</tr>
<tr>
<td>• There is no relative bandemia in the differential white cell count.</td>
</tr>
</tbody>
</table>

Memorial Day to Thanksgiving

Strategic Microbiology

• Culture!
 \((C. \text{ difficile} \text{ optional} – \text{ await bacterial culture})\)

• Hustle stool to the lab
First Medical Contact

Microbiologic Evaluation is CRITICAL
Microbiologic Evaluation is Critical

Agar vs. Assay

- Stool
- Broth
- Incubate O/N
- Shiga Toxin EIA
Agar detects only O157:H7, but this single serotype remains the nearly exclusive (>95%) cause of HUS in US, UK, Canada, Japan, and South America

Pediatrics. 1987;80:37
J Infect Dis. 1990;162:553
J Pediatr. 1998;132:777
J Infect Dis. 2001;183:1063
J Pediatr. 2002;141:172
Foodborne Pathog Dis. 2006;3:88
Epidemiol Infect. 2007 Mar 5 (epub)1-7
How much HUS do non-O157:H7 STEC cause in US?

83 patients with HUS, (1987-91), nationwide surveillance (Banatavala, et al*).

70 patients had stool cultures with growth, median of 8 days after illness onset.

30 patients had STEC; 25 of these were O157 (overall O157 rate: 35%)
(only 1/3 of HUS patients have O157:H7 if cultured on admission with HUS**, but 96% are + if cultured early in illness)

Of 5 patients from whom non-O157:H7 STEC were recovered, 4 had serology, and 3 of these 4 had evidence of a recent infection with *E. coli* O157.

Of 31 cases from whom no STEC were recovered, 21 had antibodies to O157.
(Sera obtained up to 80 days after illness onset, well after seropositivity peak***, so this rate is possibly low.

Little room left for non-O157:H7 STEC to cause HUS in US

Recent Study of HUS

50 children with diarrhea – associated HUS, from 10 centers in US (UC Davis, Seattle, Indiana, Little Rock, Milwaukee, Albuquerque, Columbus, Cincinnati, St. Louis) and 1 in Scotland (Glasgow) (Hickey, et al*)

27+ for O157, 1 + for O121:H19, All other were negative

*Arch Pediatr Adolesc Med. 2011;165:884

663 STEC infections

271 (41%) O157 culture isolates

392 (59%) Shiga toxin (+) broths

163 (42%) O157 STEC

229 (58%) non-O157 STEC

30 serogroups

© The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Connecticut 2000-2009

- 499 broth + EIAs
- 163 were O157:H7 (33%)
 - 10% HUS rate
- 229 were non-O157:H7 STEC (46%);
 - 0.4% HUS rate
- 78 (16%) were not + at State Laboratory
- 29 (6%) no STEC recovered

Clin Infect Dis 2011;53:269
O157/non-O157 Acuity Pyramid
HUS 95/5 - 99/1 in multiple studies

Seattle Children’s Hospital Emergency Room
1991\(^1\): 13/5
1998-2001\(^2\): 28/11

Statewide, MT (1998-2000)\(^3\) and CT (2000-2009) \(^4\)
MT: 32/50 (#2 was O26, with 16 isolates)
CT: 163/229 (#2 was O111, with 44 isolates)

Toxin Screening misses O157:H7 (i.e., sorbitol MacConkey agar is more sensitive)

- Klein, E, et al, J Peds 2002; 172;
Toxin Assays Slow Diagnosis of O157:H7

- Not read daily in many centers
- Often sent to commercial laboratories
- Isolation devolves to state PHL
- State of isolation isn’t always state of presentation or residence
- Specimen transport issues
Why rapidly diagnose O157?

- *E. coli* O157:H7 → thrombotic complications, epidemics; other serotypes rarely do

- Syndromic profiling helpful, but clinician needs + or - culture result ASAP

- HD needs isolate

- Intervention appears possible
Best Practices - Microbiology

Plate 24/7, don’t wait for morning shift, swabs are fine

Report presumptive positives

Receipt to telephone call:
23 hr, 53 min (14 – 56 h)
CDC Guidelines

Recommendations for Diagnosis of Shiga Toxin--Producing Escherichia coli Infections by Clinical Laboratories

“All stools submitted for testing from patients with acute community-acquired diarrhea … should be cultured for O157 STEC on selective and differential agar.”

Best practice: Agar and toxin assay

What’s the rush?
↑D-dimer Before HUS

NEJM 2002; 346:23
Child at Presentation

- Little or no toxin in stool
- Coagulation system activated, but CBC normal
- Pathogen still present in stool
- Kidneys not yet injured

What’s a provider to do?
Admit, Isolate

Inpatient (contact) precautions:
dedicated equipment, gowns, gloves

Outpatient advice:
“Wash your hands well!”

Withhold antibiotics

1997-1999, n=71

OR

• Antibiotics are a risk for HUS in MN
 Smith, K, et al, Pediatr Infect Dis J. 2011 Sep 1

• Antibiotics are commonly prescribed
 23%, Minnesota (Smith, K, et al, Pediatr Infect Dis J. 2011 Sep 1)
Volume Expand

- Comfort
- Vascular protection in view of HUS risk
- q12 h CBC (drop the hemoglobin)
- daily BUN, creatinine, electrolytes
- K is OK if K is normal or low
- Wait for platelets to rise
 (single determination rarely sufficient)
Non-oligoanuric

Oligoanuric

creatinine

creatinine

What variables are associated with good outcomes?

<table>
<thead>
<tr>
<th>Variable</th>
<th>Good outcome</th>
<th>Poor outcome</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation</td>
<td>Day 2</td>
<td>Day 3</td>
<td>0.066</td>
</tr>
<tr>
<td>First culture</td>
<td>Day 2</td>
<td>Day 3</td>
<td>0.02</td>
</tr>
<tr>
<td>First IV started</td>
<td>Day 3 (0-4)</td>
<td>Day 4.5 (2-9)</td>
<td>0.01</td>
</tr>
<tr>
<td>First Cultue obtained</td>
<td>Day 2 (0-4)</td>
<td>Day 3 (2-9)</td>
<td>0.02</td>
</tr>
<tr>
<td>Culture +</td>
<td>Day 4 (2-4)</td>
<td>Day 7 (3-9)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Pediatrics. 2005;115:e673-80
Fig 2. Volume and characteristics of fluids that were administered during first 4 days of illness

A. Total intravenous fluid volumes (L/m²/first 4 days of illness)

B. Total intravenous sodium (mmol/m²/first 4 days of illness)

C. Total intravenous free water (L/m²/first 4 days of illness)

No Oligoanuria
Oligoanuria

P = .002

P = .001

P = .717
Logistic Models

Table 4. Logistic Models

<table>
<thead>
<tr>
<th>Logistic Model</th>
<th>Variable</th>
<th>Odds Ratio (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>Age</td>
<td>1.1 (0.9-1.3)</td>
</tr>
<tr>
<td></td>
<td>Antibiotics</td>
<td>2.9 (0.7-11.4)</td>
</tr>
<tr>
<td></td>
<td>Total intravenous fluid given during the first 4 days of illness</td>
<td>6.1 (0.8-46.8)</td>
</tr>
<tr>
<td></td>
<td>Total intravenous sodium given during the first 4 days of illness</td>
<td>1.0 (0.97-1.0)</td>
</tr>
<tr>
<td>Second(^a)</td>
<td>Antibiotics</td>
<td>3.1 (0.8-11.9)</td>
</tr>
<tr>
<td></td>
<td>Total intravenous fluid given during the first 4 days of illness</td>
<td>1.4 (1.0-2.0)</td>
</tr>
<tr>
<td>Final(^b)</td>
<td>Total intravenous sodium given during the first 4 days of illness</td>
<td>1.4 (1.0-1.9)</td>
</tr>
</tbody>
</table>

\(^a\) Variables with P-values of greater than .20 were eliminated from the first model. Also, the colinear variable of sodium given in the first 4 days of illness was taken out because it had less significance than volume given.

\(^b\) Variables with P-values of greater than .05 were eliminated from the model. The final model has only volume given during the first 4 days.

Copyright restrictions may apply.
Detection Acceleration

Every second counts:
 presentation → specimen
 (come in now)
 Specimen → inoculation (swab OK)
 Inoculation → interpretation
 (don’t worry about H7, coli confirmation)
 Report → health department (do it now)
4H Management

- Hospitalize
- Hydrate
- Hold antibiotics
- Health Department