The Facts and Fiction Regarding STEC O157 in Cattle

David Renter
Kansas State University

- facts – highlights on STEC O157 epidemiology and ecology in cattle and their environment
- fiction – explain some complexities and dispel “myths” that circulate(d) about STEC control

Key facts/fiction about STEC O157

Epidemiology and ecology of fecal shedding of STEC O157 in cattle
- Variability
- Seasonality
- Production systems
- Diet
- Water
- Wildlife

STEC O157 in cattle:

STEC O157 are:

- Enteric bacteria shed (transmitted) in feces
- Fecal/oral transmission
- Found in/on healthy cattle and a variety of other species
- Found in a variety of cattle environments; essentially all herds

Impacts transmission, potential risks, and potential control focus (?)
Variability in STEC O157 – pens

Day of harvest – 44 feedlot pens; Overall ~ 30%

Fecal Prevalence

- Why?
- Mitigation?

Variability in STEC O157 – individuals

Most cattle shed STEC O157 at low concentrations
Some shed O157 at high concentrations; ~ >10⁴ CFU/g feces
“super shedders”
10% of cattle = 90% of fecal shedding
Associated with pen prevalence, transmission, contamination of hides, carcasses, etc.

Super-shedders – difference in animals or different phase of infection?

Intermittent shedding – variability within & between calves

Effects of diet and production system

- Public interest
- Misconceptions

Grass-fed vs. Grain-fed

Grass vs. Grain – STEC O157

- Evaluate the original literature –many Internet summaries confuse generic E. coli with STEC O157
- Numerous studies associate grain feeding with increased fecal concentration of generic and acid-resistant E. coli
- In contrast, forage-based diets have been most commonly associated with increased shedding levels or increased duration of shedding of O157

From Dr. David Smith
http://extension.wsu.edu/vetextension/ec/Pages/Factsheets.aspx
Most (>80%) ranch calves (on grass) have been exposed to *E. coli* O157 prior to weaning, and all ranch herds have *E. coli* O157.

Laegrid et al., 1999

After accounting for age, researchers have not seen a difference in STEC fecal shedding between cattle in extensive grass pastures or in confinement.

Renter et al., 2004

Different production systems

No striking differences in STEC O157 among different production systems

Reinstein et al., 2009

Distiller’s Grains – byproduct of ethanol production

Cereal Grains (e.g. Corn) → Ethanol → Distiller’s Grains (DG)

Distiller’s Grains – a good quality cattle feed

- Concentrated in fiber, fat and protein
- Useful to cattle as a protein or energy source
- Fed at different inclusion levels
- 10-40% ...largely affected by corn price

Distiller’s Grains (DG) – STEC O157 shedding

- Positive association
- Effects are apparent in several studies (but not all – different diets, cattle, etc?)
 - Roughly 2 fold increase
 - Dosage effects?
- Mechanisms unclear
 - Mitigation opportunities?

Jacob et al., 2010
Cattle Diet and STEC O157

- Diet associated with fecal shedding
 - Grain vs. forage
 - Feeding distiller’s grains
 - Grain type, processing method, etc.

- Mechanisms (exact) remain unknown
 - May provide opportunities for mitigation – practical solutions?

Other Species/ Sources

- Other ruminants
 - Deer, sheep, goats
- Other mammals
 - Opossum, raccoon, coyotes, cats,…
- Feral swine
 - (spinach outbreak)
- Birds
 - Starlings, turkey, flies
- Transmission to and from cattle
 - Primarily in and around cattle environments

Facts and Fiction - STEC O157 in Cattle

Epidemiology and ecology
 - Better understanding of risks and risk factors
 - Some common misconceptions
 - Variability herds/pens/calves
 - Grass vs grain
 - Confinement pens vs pasture
 - Cattle AND other species/sources

Facts and Fiction - STEC O157 in Cattle

Epidemiology and ecology, still opportunities
 - Variability among groups and individuals
 - Dietary mechanisms

Myths are counter-productive